
gem that
by James Adam

hello, I’m James Adam, and I’m going to talk a little bit about building
gems.

the title for my talk is ‘gem that’, which makes me think the opening
slide should be more like

 that!ge
m

by James Adam!
wow! Gem that! but realistically it should be more like

(a constructive rant, and
then gem-this)

(and writing gem commands)

(by James Adam)

a constructive rant, and then what I did - i.e. gem-this, and then some
information about writing gem commands.

I am going to have to drive at around 88 MPH to get through this, so it’s
probably best to save questions for the end, otherwise I might crash.

but first

building gems - a primer

it’s worth spending a few seconds considering the background of
building gems.

in it’s simplest form, building a gem is simply a case of

my_gem.gemspec
Gem::Specification.new do |s|
 s.name = "my_gem"
 s.version = "1"

 s.authors = ["James Adam"]
 s.date = "2009-12-10"
 s.description = "What it does"
 s.email = "james@lazyatom.com"
 s.files = ["Rakefile", "lib/thing.rb"]
 s.homepage = "http://lazyatom.com"
 s.require_paths = ["lib"]

 # etc
end

constructing a ‘gemspec’, which is ruby code that describes a gem, what
it does, what files it should include and which dependencies it has, and
then

mailto:james@lazyatom.com
mailto:james@lazyatom.com
http://lazyatom.com
http://lazyatom.com

 gem build my_gem.gemspec
 Successfully built RubyGem
 Name: my_gem
 Version: 1
 File: my_gem-1.gem
$ ls *.gem
my_gem-1.gem
$

$

building that gem using the ‘gem build’ command.

it’s really not that sophisticated, and the capabilities are built right
into rubygems itself.

however, given some of the tools, you might not realise that it is so
simple.

my motivation

secondly, I should explain my own perspective here. As a developer, I
quite often toy around with an idea before deciding that it might be
suitable for other people to use.
Often I’ve already put a bit of effort into organising the code, writing
some rake tasks and so on.
So when it comes to turning it into a gem, I am looking for a tool that is
going to support me.

So what should I use?

hoe
the ‘godfather’ of gem creation

well, the original daddy of gem creation was ‘hoe’, written by Ryan
Davis. It provides a command to run when you’re setting up your project
- ‘sow’.

So let’s see what happens when we run that.

$ sow hoe_project
cp -r /Users/james/.rvm/gems/ree/1.8.6%rubymanor_gem_that_talk/gems/hoe-2.3.3/
template /Users
james/.hoe_template
chmod 644 /Users/james/.hoe_template/bin/file_name.erb /Users/james/.hoe_template/
History.txt.erb /Users/james/.hoe_template/lib/file_name.rb.erb /Users/
james/.hoe_template/Manifest.txt.erb /Users/james/.hoe_template/Rakefile.erb /Users/
james/.hoe_template/README.txt.erb /Users/james/.hoe_template/test/
test_file_name.rb.erb /Users/james/.hoe_template/.autotest.erb
chmod 755 /Users/james/.hoe_template/bin/file_name.erb
cp -r /Users/james/.hoe_template hoe_project
erb: .autotest.erb
erb: History.txt.erb
erb: Manifest.txt.erb
erb: README.txt.erb
erb: Rakefile.erb
erb: bin/file_name.erb
erb: lib/file_name.rb.erb
erb: test/test_file_name.rb.erb
mv .autotest.erb .autotest
mv History.txt.erb History.txt
mv Manifest.txt.erb Manifest.txt
mv README.txt.erb README.txt
mv Rakefile.erb Rakefile
mv bin/file_name.erb bin/hoe_project
mv lib/file_name.rb.erb lib/hoe_project.rb
mv test/test_file_name.rb.erb test/test_hoe_project.rb
(.... cont)

Wow. I mean... firstly, look at all that stuff. Where do I start? It’s created
an autotest file, and a Manifest, and a README, and it’s still not even
finished

$ sow hoe_project
(.... cont)

... done, now go fix all occurrences of 'FIX':

 hoe_project/Rakefile:7: # developer('FIX', 'FIX@example.com')
 hoe_project/README.txt:3:* FIX (url)
 hoe_project/README.txt:7:FIX (describe your package)
 hoe_project/README.txt:11:* FIX (list of features or problems)
 hoe_project/README.txt:15: FIX (code sample of usage)
 hoe_project/README.txt:19:* FIX (list of requirements)
 hoe_project/README.txt:23:* FIX (sudo gem install, anything else)
 hoe_project/README.txt:29:Copyright (c) 2009 FIX
$

now I am starting this project with a ton of stuff that needs to be fixed; I
am starting my project with a bunch of debt that I need to pay off!

And what is this Manifest? do I have to use autotest? Well, OK, let’s take
a look at the Rakefile.

-*- ruby -*-
require 'rubygems'
require 'hoe'

Hoe.spec 'hoe_project' do
 # developer('FIX', 'FIX@example.com')

 # self.rubyforge_name = 'hoe_projectx'
 # if different than 'hoe_project'
end

vim: syntax=ruby

hoe Rakefile

What I really dislike about Hoe’s Rakefile is that it requires me to learn
all about Hoe before I can really get started. All it’s given me is a hint
about where I should put my name and email.

mailto:FIX@example.com
mailto:FIX@example.com

hoe Rakefile

Hoe.spec 'hoe_project' do

 # ???
end

What is supposed to go here? Pour through the RDoc, when I’d rather
be writing my own code.

So sure, there’s a learning curve involved when using Hoe, but the really
major turnoff for me is that hoe is a virus...

hoe
is a

fscking
virus

What I mean by that when you install a gem that was created with Hoe, it
will also install Hoe itself.

Hoe is controlling the generation of the gem, and Hoe adds itself as a
dependency.

That immediately pisses me off.
Now I should qualify this by saying that

hoe
was a
fscking
virus

Hoe was a virus, because in recent times, it has relented, and doesn’t
require itself to be installed by every gem that uses it.

but IT’S TOO LATE HOE. YOU ARE DEAD TO ME.

So what else can I try?

newgem

• Dr Nic

NewGem, from Dr Nic Williams

Oh, which means incidentally that this presentation should be called

 that!ge
m

by Dr James Adam!
Gem That!

by DOCTOR James Adam, but anyway, there’s

newgem
• generating structure, like the rails

command

• extensible with other ‘generators’

• pretty bat-shit mental.

NewGem, from Dr Nic Williams (http://drnicwilliams.com/2006/10/11/
generating-new-gems/)

which seems to be a product of the post-rails age, and
fully embraces the ‘generative’ style of programming.

Lets see what happens when we try to use that

$ newgem newgem_project
 create
 create lib/newgem_project
 create script
 create History.txt
 create Rakefile
 create README.rdoc
 create PostInstall.txt
 create lib/newgem_project.rb
 dependency install_test_unit
 create test
 create test/test_helper.rb
 create test/test_newgem_project.rb
 dependency install_rubigen_scripts
 exists script
 create script/generate
 create script/destroy
 create script/console
 create Manifest.txt
 readme readme
Important
=========

* Open Rakefile
* Update missing details (gem description, dependent gems, etc.)
$

Look at all that stuff - PostInstall? script/console? script/generate?

It’s obvious that newgem is trying to be comprehensive in the sorts of
libraries that it might be used with, but this does seem a bit like overkill.

And look at all the Rake tasks it generates.

$ rake -T
rake announce # publish # Announce your release.
rake audit # test # Run ZenTest against the package.
rake check_extra_deps # deps # Install missing dependencies.
rake check_manifest # debug # Verify the manifest.
rake clean # # Clean up all the extras.
rake clobber_docs # publish # Remove rdoc products
rake clobber_package # package # Remove package products
rake config_hoe # debug # Create a fresh ~/.hoerc file.
rake debug_email # publish # Generate email announcement file.
rake debug_gem # debug # Show information about the gem.
rake default # test # Run the default task(s).
rake deps:email # deps # Print a contact list for gems dependent on this gem
rake deps:fetch # deps # Fetch all the dependent gems of this gem into tarballs
rake deps:list # deps # List all the dependent gems of this gem
rake docs # publish # Build the RDOC HTML Files
rake gem # package # Build the gem file newgem_project-0.0.1.gem
rake gemspec # newgem # Generate a newgem_project.gemspec file
rake generate_key # signing # Generate a key for signing your gems.
rake install_gem # package # Install the package as a gem.
rake install_gem_no_doc # newgem # Install the package as a gem, without generating documentation(ri/rdoc)
rake manifest # manifest # Recreate Manifest.txt to include ALL files to be deployed
rake multi # test # Run the test suite using multiruby.
rake package # package # Build all the packages
rake post_blog # publish # Post announcement to blog.
rake post_news # publish # Post announcement to rubyforge.
rake publish_docs # publish # Publish RDoc to RubyForge.
rake redocs # publish # Force a rebuild of the RDOC files
rake release # package # Package and upload the release.
rake release_sanity # package # Sanity checks for release
rake release_to_rubyforge # package # Release to rubyforge.
rake repackage # package # Force a rebuild of the package files
rake ridocs # publish # Generate ri locally for testing.
rake test # test # Run the test suite.
rake test_deps # test # Show which test files fail when run alone.
$

By my count, that’s THIRTY FOUR rake tasks, including posting to a blog,
installing the gem locally but WITHOUT any rdoc, and printing a list of
the email addresses of the authors for the gems that THIS gem
depends on...

I mean... I am pretty sure I don’t need that.

We’re still not done. That was the simple mode - and we can provide it
with additional ‘generators’. Lets try it with a few more

$ newgem -i cucumber -i website newgem_ultra_project -i shoulda
 create
 create lib/newgem_ultra_project
 create script
 create History.txt
 create Rakefile
 create README.rdoc
 create PostInstall.txt
 create lib/newgem_ultra_project.rb
 dependency install_test_unit
 create test
 create test/test_helper.rb
 create test/test_newgem_ultra_project.rb
 dependency install_cucumber
 create features/step_definitions
 create features/support
 create features/development.feature
 create features/step_definitions/common_steps.rb
 create features/support/env.rb
 create features/support/common.rb
 create features/support/matchers.rb
 dependency install_website
 create website/javascripts
 create website/stylesheets
 create config
 exists script
 create website/index.txt
 create website/index.html
 create config/website.yml.sample
 create script/txt2html
 dependency plain_theme
 exists website/javascripts
 exists website/stylesheets
 create website/template.html.erb
 create website/stylesheets/screen.css
 create website/javascripts/rounded_corners_lite.inc.js
 dependency install_shoulda
 exists test
 create tasks
 force test/test_newgem_ultra_project.rb
 force test/test_helper.rb
 create tasks/shoulda.rake
 dependency install_rubigen_scripts
 exists script
 create script/generate
 create script/destroy
 create script/console
 create Manifest.txt
 readme readme
Important
=========

* Open Rakefile
* Update missing details (gem description, dependent gems, etc.)
$

Now newgem is creating me a website, and a bunch of stub tests and
cucumber features for code that I haven’t written yet! Thanks, newgem!

I am kind-of speechless, because faced with this all of a sudden my little
idea for a useful library seems unworthy of being a gem, because it
surely doesn’t warrant all of this support behind its existence.

I started to question my grip on reality at this point

$ rake -T sanity
rake release_sanity # ...

WHaTEVeR
U SaY

Dr NiC!
and found that newgem has a rake task for that too. Doctor Nic thinks of
everything!

The one geniunely good thing about newgem, however, is that every
website it creates

has a link to Paul Battley on it, increasing his pagerank.

Nice work, Paul! It’s a shame that you had to make a deal with the devil
to do it.

So what now?

has a link to Paul Battley on it, increasing his pagerank.

Nice work, Paul! It’s a shame that you had to make a deal with the devil
to do it.

So what now?

echoe
= (hoe) - (it being a dependency)

echoe is a fork of ‘hoe’ by evan weaver, whose main purpose was to
avoid having itself as a dependency.

It doesn’t provide a generator, with is a positive. Instead you have to add
a few lines to your Rakefile

echoe Rakefile

require 'echoe'
Echoe.new('gem_name')

Here’s the contents of an echoe Rakefile

But it’s still very opaque. How do I add new stuff? How do I change the
description?

Well, you do it a bit like this

echoe Rakefile

Echoe.new("vanilla.rb") do |p|
 p.author = "James Adam"
 p.summary = "A talk about this would've
 been awesome"
 p.url = "http://interblah.net"
 p.runtime_dependencies = ["soup >=1.9.9"]
 # etc... ?
end

But to figure that out you still need to dive into the RDoc, and even
then it’s not simple.

For example, the only way to change the version of a gem is to add a
line to the CHANGELOG file.

And even though echoe doesn’t declare itself as an explicit dependency
of the gems it creates, if you want to put other tasks in the Rakefile that
people can run without installing echoe, you need to

http://interblah.net
http://interblah.net

echoe Rakefile

begin

rescue LoadError
 # probably nothing
end
the rest of your Rakefile

 require 'echoe'
 Echoe.new('my_gem')

wrap the echoe code in a block to capture the exception! Ugly.

Next.

gemhub
(somewhat of a mystery to me)

So when I proposing this talk on the mailing list, someone mentioned
gemhub (http://github.com/dcrec1/gemhub) by Diego Carrion, who
claims on his blog to ‘love bits, tits and beers’, but we’ll try not to hold
that against him.

If we run it’s generator

$ gemhub gemhub_project
 create
 create lib
 create spec
 create lib/gemhub_project.rb
 create spec/gemhub_project_spec.rb
 create README.textile
 create Rakefile
$

we see something a bit more sane, but at this point I’m so agitated that

* when I notice it’s telling me that I should be using RSPEC for my tests
when I prefer Shoulda,
* and TEXTILE for my documentation when I think that Markdown is
clearer for plaintext,

... I start weeping and saying “No, No gemhub, you could’ve been right
for me, but we’re TOO DIFFERENT.” Next.

the choice of a new generation

jeweler

So then we have Jeweler (http://github.com/technicalpickles/jeweler),
which I would say is ‘top dog’ among the newest crop of Ruby
developers; lets see what it does to offend me, yes?

$ jeweler jeweler_project
	 create	.gitignore
	 create	Rakefile
	 create	LICENSE
	 create	README.rdoc
	 create	.document
	 create	lib
	 create	lib/jeweler_project.rb
	 create	test
	 create	test/helper.rb
	 create	test/test_jeweler_project.rb
Jeweler has prepared your gem in jeweler_project
$

OK, this is not too bad, certainly not as bat-shit mental as newgem
(although I don’t understand what .document is).

If we look at the Rakefile

begin
 require 'jeweler'
 Jeweler::Tasks.new do |gem|
 gem.name = "jeweler_project"
 gem.summary = %Q{summary of your gem}
 gem.email = "james@lazyatom.com"
 gem.homepage = "http://github.com/..."
 gem.authors = ["James Adam"]
 # etc ...
 end
 Jeweler::GemcutterTasks.new
rescue LoadError
 puts "Jeweler not available...."
end

jeweler Rakefile

ok, that’s not too bad, and even though it’s wrapped stuff in the rescue
block
It’s also wrapping the gemspec in this Jeweler::Tasks thing, the ‘gem’
variable that it’s yielding *is* an actual gemspec so you have complete
control over what is going on there.

But then we take a look at the rake tasks it has added

mailto:james@lazyatom.com
mailto:james@lazyatom.com
http://github.com/lazyatom/jeweler_project
http://github.com/lazyatom/jeweler_project

$ rake -T
rake check_dependencies
rake check_dependencies:development
rake check_dependencies:runtime
rake gemcutter:release
rake gemspec:debug
...
rake git:release
rake github:release
rake install
...
rake release
...
rake version:bump:major
rake version:bump:minor
rake version:bump:patch
rake version:write
$

and there’s all this cruft about dependencies, and github releases, and
version bumping, that I JUST. DON’T. NEED.

jeweler

• zeitgeisty

• tailored for github, apparently

• still provides tasks for
bumping versions, publishing

• still provides a generator

it’s just way too much. My focus has shifted from making my little bit of
code available, to servicing the needs of this overly-capable swiss-
army-knife tool.

And it occurs to me at this point that really what’s going is

too opinionated
• don’t need a tool to

manage versions, websites,
release notes, etc

• don’t need a generator

• why so opaque?

these tools are too opinionated. They’re not for building gems, they’re
all for managing your development workflow, from start to finish -
from the first spark of the idea, to the blog post announcing your latest
release.

And that’s too much for me. What I need is

what I want
•turn existing code

into a gem

•get out of my way
thefuck

a tool that will turn some existing code I have into a gem

and then get the fuck out of my way.

And oh yeah, have you seen what happens if we try and apply any of
these ‘gem’ tools to some code that you’ve already written?

$ sow my_code

Project my_code seems to exist
$

Here’s hoe (or sow - yes, it’s confusing), discovering that my code
‘already seems to exist’, as if it cannot contemplate such a thing was
possible.

$ jeweler my_code

The directory my_code already
exists. Maybe move it out of the
way before continuing?
$

And jeweler, suggesting that ‘maybe I should move it out of the way’.
Maybe jeweler shouldn’t be so bloody passive aggressive!

The only tool that comes even close is gemhub

$ gemhub my_code
 exists
 create lib
 create spec
 create lib/my_code.rb
 create spec/my_code_spec.rb
 create README.textile
overwrite Rakefile? (enter "h" for help) [Ynaiqd] h
Y - yes, overwrite
n - no, do not overwrite
a - all, overwrite this and all others
i - ignore, skip any conflicts
q - quit, abort
d - diff, show the differences between the old and the new
h - help, show this help
overwrite Rakefile? (enter "h" for help) [Ynaiqd]

but when it notices that I already have a Rakefile, it offers to either
overwrite it, or not, or handily show me how wildly different my ideas for
the Rakefile were compared to its own, for me to presumably memorise
and retype later on?

sigh.

GEM THIS
This is why I wrote ‘gem-this’.

gem this
• produces a simple Rakefile

• builds your gem

• maybe does your docs

• release to rubyforge

it only deals with one file - the Rakefile - and as a result, it only has one
dependency: Rake
The Rakefile it creates only does three things - builds gems, builds
docs, and releases to rubyforge.
And in fact, now that gemcutter is the defacto host

gem this
• produces a simple Rakefile

• builds your gem

• maybe does your docs

• release to rubyforge

It’s unlikely that I’ll keep that code in.

So how do you use it? There’s no generator, since it presumes you are
smart enough to have already set things up

/tmp $ mkdir new_thing
/tmp $ cd new_thing
new_thing $ gem-this
Writing new Rakefile
$

So once you’ve created your project, and hacked away at it a bit, doing
whatever (the fuck) you want, you just run the ‘gem-this’ command in
the directory, and it will create a Rakefile for you.

This builds the actual gem. For details of what
all these options mean, and other ones you can
add, check the documentation here:
#
http://rubygems.org/read/chapter/20
#
spec = Gem::Specification.new do |s|

 # Change these as appropriate
 s.name = "existing_project"
 s.version = "0.1.0"
 s.summary = "What this thing does"
 s.author = "James Adam"
 # etc...

gem this Rakefile

At the top of this Rakefile is the raw Gem Spec, including comments
explaining what each bit is for, and most importantly a link to more
documentation so you can really figure things out.

http://rubygems.org/read/chapter/20
http://rubygems.org/read/chapter/20

This task actually builds the gem.
Rake::GemPackageTask.new(spec) do |pkg|
 pkg.gem_spec = spec
end

Generate documentation
Rake::RDocTask.new do |rd|
 rd.rdoc_files.include("lib/**/*.rb")
 rd.rdoc_dir = "rdoc"
end

gem this Rakefile

Underneath is the actual task to create the gem, and the RDoc.

If you have a bin directory, it will hook that up. If you have a test or a
spec directory, it will create tasks and dependencies in the case of
rspec. If you’ve already got the project in git, it will ignore some files for
you.

But what if you’ve already got a Rakefile with some rake tasks that
you’ve been using while you were hacking?

/tmp $ cd old_thing
old_thing $ gem-this
Appending to existing
Rakefile
old_thing $

so if you run ‘gem-this’ in a directory that already has a Rakefile, it will
simply append everything it generates to the end of your file.

You can then move things around and edit them as you see fit.

Simple.

$ gem-this
...
$ gem this
...
$

gem open

 gem push
...
$

gem install open_gem

so I’ve been typing ‘gem-this’, but we can actually type ‘gem this’, as if
the ‘this’ command was a part of rubygems.

This is a gem command, and it’s how ‘gem push’ works for gemcutter,
and ‘gem open’ works too (that’s a handy tool by the way, check it out).

gem commands

These are examples of ‘gem commands’.

It’s really quite simple to add commands to rubygems.

the secret sauce

• subclass Gem::Command ...

• ... in a file called
rubygems_plugin.rb ...

• ... and ensure it’s in the
$LOAD_PATH

All you need to do it create a subclass

... and ensure it’s in the LOAD_PATH of your gem (typically that’s the lib
directory)

... and rubygems will find it.

my_gem/lib/rubygems_plugin.rb

require 'rubygems/command_manager'
require 'rubygems/command'

class TestCommand < Gem::Command
 def initialize
 end

 def summary
 end

 def execute
 end
end

In the subclass we need to implement these three methods: initialize,
summary and execute.

(As far as I can tell the name of the subclass needs to be in the form of
<your name> Command, so i)

my_gem/lib/rubygems_plugin.rb

require 'rubygems/command_manager'
require 'rubygems/command'

class TestCommand < Gem::Command
 def initialize
 end

 def summary
 end

 def execute
 end
end

In the subclass we need to implement these three methods: initialize,
summary and execute.

(As far as I can tell the name of the subclass needs to be in the form of
<your name> Command, so i)

my_gem/lib/rubygems_plugin.rb

class TestCommand < Gem::Command
 def initialize
 super 'name', 'short description', {:debug => false}
 add_option('-d', '--debug', 'guess!') do |d, options|
 options[:debug] = d
 end
 end

 # def summary
 # def execute
end

in the initialize method, you should call super with the name of your
command, a short description, and any default options.

You can then add additional options that will be picked up from the
command line, in a way similar to opt-parse.

my_gem/lib/rubygems_plugin.rb

class TestCommand < Gem::Command
 def initialize
 super 'name', 'short description', {:debug => false}
 add_option('-d', '--debug', 'guess!') do |d, options|
 options[:debug] = d
 end
 end

 # def summary
 # def execute
end

in the initialize method, you should call super with the name of your
command, a short description, and any default options.

You can then add additional options that will be picked up from the
command line, in a way similar to opt-parse.

my_gem/lib/rubygems_plugin.rb

class TestCommand < Gem::Command
 def initialize
 super 'name', 'short description', {:debug => false}
 add_option('-d', '--debug', 'guess!') do |d, options|
 options[:debug] = d
 end
 end

 # def summary
 # def execute
end

in the initialize method, you should call super with the name of your
command, a short description, and any default options.

You can then add additional options that will be picked up from the
command line, in a way similar to opt-parse.

my_gem/lib/rubygems_plugin.rb

class TestCommand < Gem::Command
 # def initialize

 def summary
 "What this command does..."
 end

 # def execute
end

the summary command is fairly self-explanatory - this just needs to be
a string

my_gem/lib/rubygems_plugin.rb

class TestCommand < Gem::Command
 # def initialize

 # def summary

 def execute
 puts "You ran me with
 #{options.inspect}"
 end
end

and finally the execute command is where you kick off whatever your
command actually does. In this method you have access to the options
hash, which includes the arguments passed on the command line and
any option flags that you’ve defined.

The last thing you need to do is register the command with Rubygems

my_gem/lib/rubygems_plugin.rb

class TestCommand < Gem::Command
 # def initialize

 # def summary

 def execute
 puts "You ran me with
 #{options.inspect}"
 end
end

and finally the execute command is where you kick off whatever your
command actually does. In this method you have access to the options
hash, which includes the arguments passed on the command line and
any option flags that you’ve defined.

The last thing you need to do is register the command with Rubygems

my_gem/lib/rubygems_plugin.rb

the command class
...

Gem::CommandManager.instance.
 register_command :test

This is simply a case of adding this line at the bottom of the
rubygems_plugin file.

As an example, here’s the gem command for gem-this

gem_this/lib/rubygems_plugin.rb

%w(rubygems/command_manager rubygems/command
 gem_this).each { |lib| require lib }

class ThisCommand < Gem::Command
 def initialize
 super 'this', GemThis::SUMMARY, :debug => false
 add_option('-d', '--debug', GemThis::DEBUG_MESSAGE) do |d, options|
 options[:debug] = d
 end
 end

 def summary; GemThis::SUMMARY; end

 def execute
 GemThis.new(File.basename(Dir.pwd), options[:debug]).create_rakefile
 end
end

Gem::CommandManager.instance.register_command :this

Most of the logic is delegated into the ‘GemThis’ class, so it can be
shared with the actual gem-this bin

FUCK
YOUR

CONVENTIONS

I promised someone I wrote include this slide, so here it is.

github.com/lazyatom/gem-this

gem install gem-this

Here’s the github URL - thanks for listening!

github.com/lazyatom/gem-this

gem install gem-this

james@lazyatom.com

http://gofreerange.com
Here’s the github URL - thanks for listening!

mailto:james@lazyatom.com
mailto:james@lazyatom.com

